AI

AI/データサイエンス

【G検定対策】AIに関する定理・ルール

AIに関しては、”定理”や”ルール”と呼ばれている者が複数存在します。代表的なものを紹介します。
AI/データサイエンス

【G検定対策】AIに対する著名人のコメント

G検定で例年出題される、AIに対して著名人がどのような意見を表明しているかを纏めました。
AI/データサイエンス

【機械学習】パーセプトロン

今回は学習の中の教師あり学習の分野における、パーセプトロン(Perceptron)について解説します。
スポンサーリンク
AI/データサイエンス

【機械学習】ランダムフォレスト

今回は機械学習の中の教師あり学習の分野における、ランダムフォレスト(Random forest)について解説します。
AI/データサイエンス

【機械学習】アンサンブル学習

今回は、機械学習の予測精度を高くするために使われるアンサンブル学習について解説します。
AI/データサイエンス

【機械学習】決定木

今回は機械学習で使われるアルゴリズム決定木(decision tree)について解説します。
AI/データサイエンス

【機械学習】線形回帰

今回は機械学習の中の教師あり学習の分野における、線形回帰について解説します。
AI/データサイエンス

【機械学習】正則化

機械学習のモデル構築を進めるうえで最も重要なポイントの一つが、いかにして最適なパラメータ(w)を見つけるか、ということです。今回は、その為の手法の1つである正則化について説明します。
AI/データサイエンス

【機械学習】勾配降下法の問題

今回の記事では、勾配降下法の問題について説明します。勾配降下法の問題としては、局所最適解に陥る問題と、勾配消失問題が挙げられます。
AI/データサイエンス

【機械学習】正規化とは何か? 標準化との違いは?

今回は、機械学習やディープラーニングで精度の高いモデルを作成する際に欠かせない、正規化について説明します。
スポンサーリンク